
AO Series – Industrial Air Cooled Copper Tube/Aluminum Fins

The Industrial AO Series features an AC fan drive and is ideal for medium flow rates and moderate heat removal. This series is available with an optional internal pressure bypass. Cabinet louvers allow the user to regulate the direction of heated exhaust air. This versatile design allows for a one or two pass configuration.

TTP's XSelector sizing program can be used to help optimize the sizing of the cooler for better performance and value.

How to Order

^{*} To register for **XSelector** please go to **www.thermaltransfer.com/get-in-touch/** and complete the XSelector Inquiry form and submit.

Download the XSelector for both Apple and Android formats by searching for XSelector in their App Stores. You must first register for XSelector before using it on mobile devices.

Options

Internal pressure bypass **Foot brackets**

SAE & metric connections Corrosive resistant marine coating

Ratings

Maximum Operating Pressure 300 PSI

Test Pressure 300 PSI

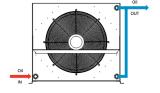
Maximum Operating Temperature 400°F

Materials

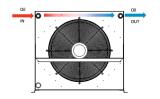
Tubes Copper Fins Aluminum

Turbulators Steel

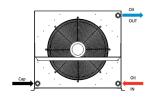
Fan Blade Aluminum with steel hub

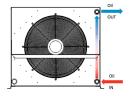

Fan Guard Zinc plated steel

Cabinet Steel with powder coat finish

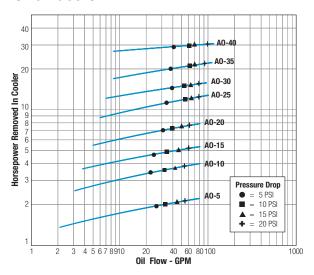

Manifolds Steel **Connections** Steel

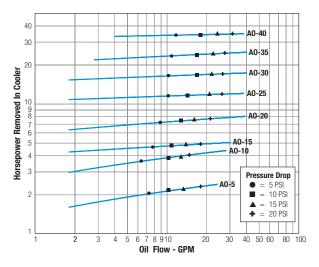
Piping Diagram


AO - One Pass

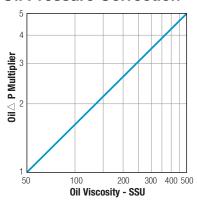

AOR - One Pass with Bypass

AO - Two Pass


AOR - Two Pass with Bypass


Performance Curves

For additional sizing information consider using TTP's XSelector online sizing Program.*


One Pass Oil

Two Pass Oil

Oil Pressure Correction

Selection Procedure

Performance Curves are based on 50SSU oil leaving the cooler 40° F higher than the ambient air temperature used for cooling. This is also referred to as a 40° F approach temperature.

STEP 1 Determine the Heat Load. This will vary with different systems, but typically coolers are sized to remove 25 to 50% of the input nameplate horsepower.

(Example: 100 HP Power Unit x .33 = 33 HP Heat load.)

If BTU/HR is known: HP = $\frac{BTU/HR}{2545}$

STEP 2 Determine Approach Temperature. Desired oil leaving cooler °F — Ambient air temp. °F = Actual Approach

STEP 3 Determine Curve Horsepower Heat Load. Enter the information from above:

Horsepower heat load x $\frac{40 \times \text{Cv}^{1}}{\text{Actual Approach}} = \text{Curve Horsepower}$

STEP 4 Enter curves at oil flow through cooler and curve horsepower. Any curve above the intersecting point will work.

STEP 5 Determine Oil Pressure Drop from Curves:

I=5 PSI n=10 PSI s=14 PSI =20 PSI Multiply pressure drop from curve by correction factor found in oil sP correction curve.

Desired Reservoir Temperature

Return Line Cooling: Desired temperature is the oil temperature leaving the cooler. This will be the same temperature that will be found in the reservoir.

Off-Line Recirculation Cooling Loop: Desired temperature is the oil temperature entering the cooler. In this case, the oil temperature change must be determined so that the actual oil leaving temperature can be found. Calculate the oil temperature change (oil ΔT) with this formula:

 $Oil \triangle T = (BTU's/HR) / (GPM Oil Flow x 210).$

To calculate the oil leaving temperature from the cooler, use this formula: Oil Leaving Temp. = Oil Entering Temp - Oil \triangle T.

This formula may also be used in any application where the only temperature available is the entering oil temperature.

Oil Pressure Drop: Most systems can tolerate a pressure drop through the heat exchanger of 20 to 30 PSI. Excessive pressure drop should be avoided. Care should be taken to limit pressure drop to 5 PSI or less for case drain applications where high back pressure may damage the pump shaft seals.

Oil Temperature

Typical operating temperature ranges are:

Hydraulic Motor Oil 110°- 130°F Hydrostatic Drive Oil 130°- 180°F Bearing Lube Oil 120°- 160°F Lube Oil Circuits 110°- 130°F

¹Cv correction chart found on page 4.

^{*} To register for XSelector please go to www.thermaltransfer.com/get-in-touch/ and complete the XSelector Inquiry form and submit.

Download the XSelector for both Apple and Android formats by searching for XSelector in their App Stores. You must first register for XSelector before using it on mobile devices.

Specifications

Electric Motor & Fan Data*

Model	CFM	Sound dB(A)* at 7 FT	HP	Volts	Phase	Full Load Amps	HZ	Nema Frame	RPM	Туре	Circuit	Thermal Overload	Bearing B-Ball
A0-5	401/187 494	68 70	1/12 1/4	110/115 208-230/460	1 3	1.2/1.2 1.4-1.3/.65	50/60 60	48	1400/1700 1725	TEAO TEFC	A D	No	В
A0-10	576/700 710	68 70	1/12 1/4	110/115 208-230/460	1 3	1.2/1.2 1.4-1.3/.65	50/60 60	48	1400/1700 1725	TEAO TEFC	A D	No	В
A0-15	824/1000 1015	69 71	1/12 1/4	110/115 208-230/460	1 3	1.2/1.2 1.4-1.3/.65	50/60 60	48	1400/1700 1725	TEAO TEFC	A D	No	В
A0-20	1555	70 72	1/6 1/4	115/208-230 208-230/460	1 3	4/2.1-2 1.4-1.3/.65	60	48	1725	TEFC	C D	No	В
A0-25	2240	72 73	1/6	115/208-230 208-230/460	1 3	4.6/2.2 1.3-1.2/.6	60	48	1140	TEFC	C D	No	В
A0-30	3100	75 76	1/6	115/208-230 208-230/460	1 3	5.2/2.7-2.6 1.3-1.2/.6	60	48	1140	TEFC	C D	No	В
A0-35	4370	76 77	1/2	115/208-230 208-230/460	1 3	8/4.2-4 2.5-2.4/1.2	60	56	1140	TEFC	C D	No	В
A0-40	5450	78 79	1/2	115/208-230 208-230/460	1 3	8/4.2-4 2.5-2.4/1.2	60	56	1140	TEFC	C D	No	В

Published electrical ratings are approximate, and may vary because of motor brand. Actual ratings are on motor nameplate.

Explosion Proof Motors (Class I GP.D & Class II GP.F, G)*

Model	CFM	Sound dB(A)* at 7 FT	HP	Volts	Phase	Full Load Amps	HZ	Nema Frame	RPM	Туре	Circuit	Thermal Overload	Bearing B-Ball
A0-5	494	68 70	1/4	115/230 208-230/460	1 3	5.8/2.9 1.4-1.3/.65	60	48	1725	FC	C D	Yes	В
A0-10	710	68 70	1/4	115/230 208-230/460	1 3	5.8/2.9 1.4-1.3/.65	60	48	1725	FC	C D	Yes	В
A0-15	1015	69 71	1/4	115/230 208-230/460	1 3	5.8/2.9 1.4-1.3/.65	60	48	1725	FC	C D	Yes	В
A0-20	1555	70 72	1/4	115/230 208-230/460	1 3	5.8/2.9 1.4-1.3/.65	60	48	1725	FC	C D	Yes	В
A0-25	2240	72 73	1/3	115/230 208-230/460	1 3	6.8/3.4 1.8-1.6/.8	60	56	1140	FC	C D	Yes	В
A0-30	3100	75 76	1/3	115/230 208-230/460	1 3	6.8/3.4 1.8-1.6/.8	60	56	1140	FC	C D	Yes	В
A0-35	4370	76 77	1/2	115/230 208-230/460	1 3	8/4 2.5-2.4/1.2	60	56	1140	FC	C D	Yes	В
A0-40	5450	78 79	1/2	115/230 208-230/460	1 3	8/4 2.5-2.4/1.2	60	56	1140	FC	C D	Yes	В

575 Volt

		Sound dB(A)**				Full Load		Nema				Thermal	Bearing
Model	CFM	at 7 FT	HP	Volts	Phase	Amps	HZ	Frame	RPM	Type	Circuit	Overload	B-Ball
A0-5	494	70	1/4	575	3	.52	60	48	1725	TEFC	D	No	В
AO-10	710	70	1/4	575	3	.52	60	48	1725	TEFC	D	No	В
A0-15	1015	71	1/4	575	3	.52	60	48	1725	TEFC	D	No	В
A0-20	1555	72	1/4	575	3	.52	60	48	1725	TEFC	D	No	В
A0-25	2240	73	1/2	575	3	.88	60	56	1140	TEFC	D	No	В
A0-30	3100	76	1/2	575	3	.88	60	56	1140	TEFC	D	No	В
A0-35	4370	77	1/2	575	3	.88	60	56	1140	TEFC	D	No	В
A0-40	5450	79	1/2	575	3	.88	60	56	1140	TEFC	D	No	В

^{*}Catalog dB(A) sound levels are at seven (7) feet. dB(A) sound levels increase by six (6) dB(A) for halving this distance and decrease by six (6) dB(A) for doubling this distance.

Published electrical ratings are approximate, and may vary because of motor brand. Actual ratings are on motor nameplate.

*Catalog dB(A) sound levels are at seven (7) feet. dB(A) sound levels increase by six (6) dB(A) for halving this distance and decrease by six (6) dB(A) for doubling this distance.

^{*}D Squirrel Cage
**Catalog dB (A) sound levels at seven (7) feet. dB (A) sound levels increase by six (6) dB (A) for halving this distance, and decrease by six (6) dB (A) for doubling this distance.

Specifications

Net Weight (LBS)

Model	Weight
A0-5	47
AO-10	62
A0-15	72
A0-20	86
AO-25	120
A0-30	135
A0-35	160
A0-40	185

One Pass (Medium to High Oil Flows)

Model	Flow Range GPM (USA)
AOR - 5-1	2 - 80
AOR - 10-1	3 - 80
AOR - 15-1	4 - 80
AOR - 20-1	5 - 80
AOR - 25-1	6 - 100
AOR - 30-1	7 - 100
AOR - 35-1	8 - 112
AOR - 40-1	9 - 118

Two Pass (Low to Medium Oil Flows)

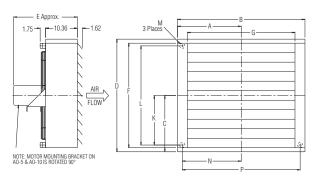
Model	Flow Range GPM (USA)
AOR - 5-2	2 - 25
AOR - 10-2	2 - 30
AOR - 15-2	2 - 30
AOR - 20-2	2 - 40
AOR - 25-2	2 - 40
AOR - 30-2	2 - 40
AOR - 35-2	3 - 40
AOR - 40-2	4 - 40

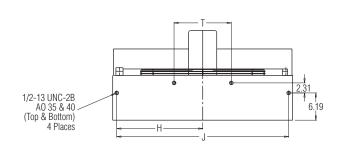
C_V Viscosity Correction

	OIL OIL													
Average Oil Temp °F	SAE 5 110 SSU at 100°F 40 SSU at 210°F	SAE 10 150 SSU at 100°F 43 SSU at 210°F	SAE 20 275 SSU at 100°F 50 SSU at 210°F	SAE 30 500 SSU at 100°F 65 SSU at 210°F	SAE 40 750 SSU at 100°F 75 SSU at 210°F	50-50 Ethylene Glycol & Water								
100	1.14	1.22	1.35	1.58	1.77	1.11								
150	1.01	1.05	1.11	1.21	1.31	1.02								
200	.99	1.00	1.01	1.08	1.10	.96								
250	.95	.98	.99	1.00	1.00	.95								

Lubrication Notes

Caution: Do not over oil or over grease. Ball bearings – No grease needed at start up. Grease as follows:


5,000 Hours/Year	5 Year Grease Interval
Continuous — Normal Applications	2 Years
Seasonal Service — Motor is idle for 6 months or more	1 Year
Continuous — High ambients, dirty or moist locations, high vibration	6 Months


Dimensions

Model	Α	В	C	D	E	F	G	Н	J	K	L	M NPT	M SAE	N	P	T
A0-5	7.40	14.81	5.90	11.81	20.00	9.08	8.31	6.47	12.94	3.78	7.56	1"	-16 1 ⁵ ⁄ ₁₆ -12	5.84	11.69	_
AO-10	9.50	19.00	6.56	13.12	19.25	10.39	12.50	8.56	17.12	4.44	8.88	1"		7.94	15.88	_
A0-15	10.19	20.38	7.87	15.75	19.25	13.02	13.88	9.25	18.50	5.75	11.50	1"		8.62	17.25	_
A0-20	11.84	23.69	9.19	18.38	19.25	15.64	17.19	10.90	21.81	7.00	14.00	11/4"		10.28	20.56	_
A0-25	13.34	26.68	11.81	23.62	19.25	20.89	20.19	12.40	24.81	9.62	19.25	11/4"	00	11.78	23.56	_
AO-30	15.81	31.62	13.78	27.56	19.50	24.83	25.12	14.87	29.75	11.59	23.19	11/4"	-20 - 1 ⁵ /8-12	14.25	28.50	_
A0-35	16.90	33.81	15.09	30.19	21.50	27.45	27.31	15.97	31.94	12.90	25.81	11/4"		15.34	30.69	11.00
A0-40	20.81	41.62	18.37	36.75	20.50	34.01	35.12	19.87	39.75	16.19	32.38	11/4"		19.25	38.50	13.25

NOTE: All dimensions in inches.

Fan Rotation Clockwise/Facing Motor Shaft

